

Communication

Carboxylation of an *ansa*-Zirconocene Dinitrogen Complex: Regiospecific Hydrazine Synthesis from N and CO

Donald J. Knobloch, Hannah E. Toomey, and Paul J. Chirik J. Am. Chem. Soc., 2008, 130 (13), 4248-4249 • DOI: 10.1021/ja8008506 Downloaded from http://pubs.acs.org on February 8, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 1 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 03/08/2008

Carboxylation of an *ansa*-Zirconocene Dinitrogen Complex: Regiospecific Hydrazine Synthesis from N₂ and CO₂

Donald J. Knobloch, Hannah E. Toomey, and Paul J. Chirik*

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853

Received February 2, 2008; E-mail: pc92@cornell.edu

Dinitrogen, N₂, and carbon dioxide are two abundant and readily accessed atmospheric gases that could, in principle, be useful synthons for organic compounds.¹ The kinetic and thermodynamic stability of both molecules presents significant challenges in designing efficient chemical transformations based on these two potential feedstocks. The discovery of early transition-metal dinitrogen compounds with four electron reduced, $[N_2]^{4-}$ ligands²⁻⁴ offers the potential to form new nitrogen—carbon bonds using CO₂ by both cycloaddition⁵ and insertion-type pathways.⁶ Here we describe the regioselective synthesis of *N*,*N'*-dicarboxylated hydrazines where the selectivity of the N–C bond forming reaction is controlled by a *C*₂-symmetric *ansa*-zirconocene compound.⁷

Our laboratory has previously reported that the hafnocene dinitrogen complex, $[(\eta^5-C_5Me_4H)_2Hf]_2(\mu_2, \eta^2, \eta^2-N_2)$ (1-N₂), inserted 2 equiv of carbon dioxide to predominately yield 1-NN(CO₂)₂, where the same nitrogen atom was carboxylated twice (eq 1).⁸ A small amount (~15%) of the N,N'-functionalized product was observed. Subsequent treatment of 1-NN(CO₂)₂ with excess Me₃SiI liberated the silylated *N*,*N*-dicarboxylated hydrazine. Synthesis of the hafnium congener was inspired by the observation that 1-N₂ has a higher barrier for deleterious side-on, end-on isomerization of the N₂ ligand and is less prone to undergo dinitrogen loss.⁹ Here we report that such functionalization pathways are available to zirconium compounds if the appropriate ligand environment is present.

Based on the hafnium chemistry, our laboratory sought to prepare a zirconocene dinitrogen complex that is resistant to ligand-induced $N_2\ loss^{12}$ and mimics the carboxylation chemistry of $\mbox{1-}N_2.$ The configurational stability and well-established¹⁰ electronic properties of [Me2Si]-bridged ansa-zirconocenes made this class of compounds attractive for N₂ carboxylation. We recently reported the diastereoselective synthesis of the dimeric ansa-zirconocene dinitrogen complex, $[Me_2Si(\eta^5-C_5Me_4)(\eta^5-C_5H_3-3-^tBu)Zr]_2(\mu_2, \eta^2, \eta^2-N_2)$ (2-N₂).¹¹ Both X-ray crystallography and multinuclear NMR studies established sole formation of the C_2 symmetric, homochiral dimer. We were pleased to find that $2-N_2$ undergoes extremely slow exchange with ¹⁵N₂ gas, establishing a high barrier for ligandinduced side-on, end-on isomerization.¹¹ In fact, 2-15N2 is best prepared from Na(Hg) reduction of the zirconocene diiodide, 2-I₂, in the presence of ¹⁵N₂. Use of the zirconocene diiodide rather than the dichloride precursor eliminates trace contamination from zirconium(III) monohalide compounds that interfere with subsequent CO₂ chemistry.

Figure 1. Partial benzene- d_6 ¹³C NMR spectrum of **2-(N**¹³CO₂)₂ (left) and **2-(**¹⁵N¹³CO₂)₂ (right).

Addition of 2 equiv of CO₂ to a green pentane solution of $2-N_2$ resulted in immediate formation of an orange precipitate identified as the CO₂ insertion product, $2-(NCO_2)_2$, where N₂ carboxylation has occurred at each nitrogen atom (eq 2). Addition of 1 equiv of CO₂ to $2-N_2$ resulted in 50% conversion to $2-(NCO_2)_2$.

Special care must be exercised in handling **2-**(**NCO**₂)₂ as decomposition to insoluble and unidentified products occurred over the course of hours ($t_{1/2} \sim 30$ min) in benzene- d_6 solution at 23 °C. Once isolated as a solid, **2-**(**NCO**₂)₂ is stable for weeks in an inert atmosphere. Similar behavior was observed for the hafnocene complex, **1-NN(CO**₂)₂, although solution decomposition occurred on the time scale of days under similar conditions.⁸

Although the instability of **2-(NCO₂)**₂ has thus far precluded structural determination by X-ray diffraction, multinuclear NMR experiments, IR spectroscopy, combustion analysis, and reactivity studies definitively establish the regiochemistry of dinitrogen carboxylation. The benzene- d_6 ¹H NMR spectrum of **2-(NCO₂)**₂ exhibits the number of resonances expected for a C_2 symmetric dimeric zirconocene. Likewise, a single ¹³C resonance was observed at 166.0 ppm, which splits into an AA'XX' pattern upon labeling with ¹⁵N₂ gas (Figure 1). Simulating the data yielded coupling constants similar in magnitude to those reported for **1-NN(CO₂)**₂,⁸ confirming N₂ carboxylation.

¹⁵N NMR spectroscopy also established functionalization of each nitrogen atom. A single resonance centered at 209.5 ppm was observed, comparable to the value of 184.4 ppm for the carboxy-lated nitrogen in **1-NN(CO₂)**₂.⁸ If the structure of **2-(NCO₂)**₂ was analogous to the hafnocene compound where one nitrogen atom

Figure 2. N,N'-Dicarboxylated hydrazine synthesis from treatment of 2-(NCO₂)₂ with various electrophiles.

was functionalized twice, C_2 symmetry and single ¹³C and ¹⁵N NMR resonances would not be observed. Thus, the C_2 symmetry imparted by the *ansa*-zirconocene ligand environment translates onto the regiochemistry of nitrogen carboxylation. The sterically demanding *tert*-butyl substituents likely direct the approach of the inserting CO₂ molecule to the more open lateral positions of the metallocene wedge, although the opposite configuration, whereby the CO₂ inserts *syn* to the 'Bu, has not been definitively eliminated.

Treatment of a benzene- d_6 solution of **2-(NCO₂)**² with excess Me₃SiI rapidly generated **2-I**₂ along with *N*,*N*'-dicarboxylated hydrazine, [(Me₃Si)(Me₃SiO₂C)N]₂ (**3**) (Figure 2). While the mass spectral data of **3** and its ¹³C and ¹⁵N isotopologues are identical to that previously reported for the N,N-isomer, the multinuclear NMR spectroscopic data are distinctly different and firmly establish its identity as the *N*,*N*'-dicarboxylated isomer.¹³

Motivated by these findings, the synthesis of other *N*,*N'*-dicarboxylated hydrazines coupled to a second N–C bond forming reaction was targeted. Treatment of a benzene- d_6 solution of **2**-(NCO₂)₂ with 3 equiv of CH₃OTf furnished a 1:1 ratio of the zirconocene bis(triflate), **2**-(OTf)₂, and a second zirconium compound, **4**, with new nitrogen–carbon bonds. **2**-(OTf)₂ was prepared in a straightforward manner from **2-I**₂ and AgOTf. Preparation of various isotopologues of **4** with ¹⁵N₂, ¹³CO₂, ¹³CH₃OTf, and CD₃-OTf along with protonation and 2-D NMR experiments¹³ establish the identity of the product as the *ansa*-zirconocene hydrazido where a total of three new N–C bonds (two from CO₂, one from CH₃-OTf) have been assembled (Figure 2).¹⁴ Because we have been unable to obtain X-ray quality crystals of **4**, the hapticity and the relative stereochemistry of the hydrazido ligand in the zirconocene wedge has not been established.

Although excess methyl triflate is not a sufficiently potent electrophile to cleave to the Zr–N(hydrazido) bond in **4**, free hydrazine, **5**, was obtained upon hydrolysis (Figure 2). A parent ion peak of 162 amu was observed for the natural abundance hydrazine, and the appropriate isotopic perturbations were observed upon preparation of the d_9 isotopologue from CD₃OTf, ¹³C₂ isotopologues from independent additions of ¹³CH₃OTf and ¹³CO₂, respectively, and the ¹³C₄ isotopologue from the combination of ¹³CH₃OTf and ¹³CO₂. While excess MeOTf and MeI proved ineffective for removing the free hydrazine (even with heating), addition of excess Me₃SiI to **4** produced a mixture of the previously reported silylated hydrazine, **6**,¹⁵ along with **2-I₂** and Me₃SiOTf (Figure 2).

In summary, a C_2 -symmetric *ansa*-zirconocene dinitrogen complex promotes selective insertion of 2 equiv of CO₂ into Zr–N bonds resulting in the synthesis of a variety of *N*,*N*'-dicarboxylated hydrazines from two inert atmospheric gases, N₂ and CO₂. The functionalized product can be treated with silyl- and carbon-based electrophiles to form new N–Si and N–C bonds, respectively.¹⁴ These results open new synthetic pathways for the selective synthesis of organic molecules from abundant chemical feedstocks and demonstrate that such N₂ functionalization with heterocumulenes reactions are available to zirconium.

Acknowledgment. We thank the Director, Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy (DE-FG02-05ER15659) for financial support. P.J.C. is a Cottrell Scholar sponsored by the Research Corporation, a David and Lucile Packard Fellow in science and engineering, and a Camille Dreyfus Teacher-Scholar.

Supporting Information Available: Complete ref 1 citation, experimental procedures, and select NMR spectroscopic data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Marks, T. J. et al. Chem. Rev. 2001, 101, 953.
- (2) MacLachlan, E. A.; Fryzuk, M. D. Organometallics 2006, 25, 1530.
- (3) Chirik, P. J. Dalton Trans. 2007, 16.
- (4) Pool, J. A.; Bernskoetter, W. H.; Chirik, P. J. J. Am. Chem. Soc. 2004, 126, 14326.
- (5) Guiducci, A. E.; Cowley, A. R.; Skinner, M. E. G.; Mountford, P. J. Chem. Soc., Dalton Trans. 2001, 1392.
- (6) (a) Chisholm, M. H.; Extine, M. W. J. Am. Chem. Soc. 1977, 99, 792. (b) Andersen, R. A. Inorg. Chem. 1979, 18, 2928.
- (7) For application of *ansa*-cyclopentadienyl ligands in stereospecific olefin polymerization, see: Coates, G. W. *Chem. Rev.* 2000, 100, 1223.
- (8) Bernskoetter, W. H.; Lobkovsky, E.; Chirik, P. J. Angew. Chem., Int. Ed. 2007, 46, 2858.
- (9) Bernskoetter, W. H.; Olmos, A. V.; Pool, J. A.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2006, 128, 10696.
- (10) Zachmanoglou, C. E.; Docrat, A.; Bridgewater, B. M.; Parkin, G.; Brandow, C. G.; Bercaw, J. E.; Jardine, C. N.; Lyall, M.; Green, J. C.; Keister, J. B. J. Am. Chem. Soc. 2002, 124, 9525.
- (11) Hanna, T. E.; Keresztes, I.; Lobkovsky, E.; Chirik, P. J. *Inorg. Chem.* **2007**, *46*, 1675.
- (12) Bernskoetter, W. H.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2005, 127, 14051.
- (13) See the Supporting Information for details.
- (14) Hirotsu, M.; Fontaine, P. P.; Zavalij, P. Y.; Sita, L. R. J. Am. Chem. Soc. 2007, 129, 12690.
- (15) Kalinin, A. V.; Apasov, E. T.; Bugaeva, S. V.; Ioffe, S. L.; Tartakovskii, V. A. Bull. Acad. Sci. USSR Div. Chem. Sci. 1983, 32, 1282.

JA8008506